
Conditions for Gibbs-type solutions of stationary Fokker-Planck equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 1111

(http://iopscience.iop.org/0305-4470/18/7/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 1111-1117. Printed in Great Britain 

Conditions for Gibbs-type solutions of stationary 
Fokker-Planck equations 

Dietrich Rytert 
Institut fur  Physik, Klingelbergstrasse 82, CH-4056 Basel, Switzerland 

Received 17 September 1984 

Abstract. Solutions depending on the noise scale E in the same way as the Gibbs distribution 
are typical for systems with detailed balance (uniform in E ) ,  but apply also more geneally. 
We give criteria for their existence as well as conditions for an elementary evaluation. 

1. Introduction 

To find an explicit solution of time-independent Fokker-Planck equations is a problem 
of considerable practical interest. Clearly, for systems at thermal equilibrium it is 
solved by the Gibbs distribution; more generally, detailed balance (Graham and Haken 
1971, Graham 1973) provides a systematic solution method. Here we shall specify 
some quite different criteria, which do not rely upon physical notions or upon symmetry 
transformations, but can be checked from the Fokker-Planck equation in a straightfor- 
ward way. We shall focus on distributions that involve the scale E of the noise intensity 
in the same way as the temperature occurs in the Gibbs distribution: 

P ( X ,  E )  = exp[-4(x)/sI. (1.1) 

This form applies when detailed balance holds uniformly in E, but also in quite different 
cases. The necessary conditions for (1.1) are thus also necessary for uniform detailed 
balance (which may sometimes be 'hidden' by an inadequate choice of the system 
variables), and the sufficient (but not necessary) conditions ensure an elementary 
construction of 4 and may hold with or without detailed balance. 

For simplicity we shall first treat the cases with a state-independent diffusion; the 
subsequent extension will require an extra assumption as far as the necessary condition 
is concerned. A critical discussion will be given at the end of the paper. 

2. Equations with constant diffusion 

We consider the stationary Fokker-Planck equation 

[ - K ' ( x ) p ( x ) +  .D"b,j(x)],i = o  
with the symmetric and non-negative diffusion matrix D, supposed here to be constant. 
The symbol ',,' denotes the derivative with respect to xi, and summation over equal 
indices is always understood. 
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2.1. Uniform detailed balance 

In order to clarify both the common and the different features, we briefly outline the 
implications of uniform detailed balance. Here (and only here) we suppose that time 
reversal results in the decomposition of the drift K into an irreversible part d and a 
reversible one r :  

K ' = d ' + r ' .  (2.2) 

Detailed balance implies 

d 'p  =  ED"^,,, 
so that with a regular D 

&(ln p ) , '  = (D-') , ,d' .  

If the right-hand side is indeed a gradient, i.e. if 

(D-'),d.Ik is symmetric in i ,  k (2.3) 
(the 'potential condition'), then (1 .1)  follows, with 4 given by D"4,, = d' .  The further 
condition is 

( r l p ) , ,  = 0 = r,Il - E-1r'4,1.  

Here the uniformity in E becomes important: it implies both 

r'4,'  = 0 

and 

= 0. 

2.2. Consequences of the Gibbs-type form ( 1 . 1 )  

We now disregard time reversal and simply insert (1.1) iqto (2.1). This yields 

E - ' [ ( K '  + D"4, , )4 , , ]+  E ' [ K ; ,  + D Y 4 , , ]  = 0. 

Uniformity in E forces both brackets to zero. With the definition 

r' A K '  + D u d , ,  ( 2 . 6 )  
the properties (2.4), (2.5) are recovered; this also motivates the use of the same symbol 
r. However, the situation differs from before inasmuch as 4 must now be calculated 
from 

( K t  + D"4,,)4,~ = 0, (2.7) 
before r is known. Solving (2.7) is not quite simple, and since we shall nowhere assume 
that 4 is known globally from (2.7) alone, we only give a few comments (and refer to 
Ludwig 1975, Ryter and Jordan 1984): at a stationary point of K ( K  = O ;  denoted by 
* in what follows) the gradient of 4 vanishes, and the matrix C ,  A a24/ax' a 2  of its 
second derivatives is determined by 

&B + BT& + 2 e D e  = 0, (2.8) 
where B ; ( x )  A K l , ( x )  and where BT denotes the transpose of B. If e-' exists, it can 
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by standard methods (Gantmacher 1970). 
The characteristics of (2.7) emerge from the attractors of K.  They can be used for 

the construction of +Jx),when the starting values near the attractors are known, as 
for example by + = I$ + C, 6x' 6 x J / 2  near a point attractor. Similar expansions hold 
near attractive cycles or tori. Unfortunately, the resulting 4 ( x )  need not be single- 
valued globally (Graham and Tel 1984). 

We just mention that if 4 were available from (2.7), one could easily check (2.5) 
to verify if ( 1 . 1 )  holds. 

Instead of considering (2.7) further, we now use (2.4) to rewrite r as 

r ' (x )  = AV(x)4, , (x)  with AJ' = -A" (2.10) 

r' = AV(4)+,, .  (2.11) 

K ' = [ A " ( 4 ) - D v ] + , , .  (2.12) 

and note that (2.5) implies that A only depends on 4: 

With (2.6) this leads to 

The matrix A can be evaluated at a stationary point of K :  since grad 4 = 0 there, (2.12) 
leads to 

(2.13) 6 = (A - D )  t, 
so that by (2.8), (2.9), A = A ( 4 )  is known. 

2.3. A suficient condition 

An interesting consequence can now be derived with the further assumption that 

A( d )  = constant. (2.14) 

By (2.12) and (2.13) this results in 

grad 4 = & ' K ( x ) ,  (2.15) 

and the corresponding integrability condition states that 

k6- ' B ( x ) must be symmetric for all x. (2.16) 

Clearly, when (2.16) holds, 4 ( x )  is obtained from (2.15) by integration along any paths. 
An example without detailed balance, that satisfies (2.16), is the optical bistability 

model of Graham and Schenzle (1981) with y = 6. 

2.4. A necessary condition 

The more general question is whether an antisymmetric A ( 4 )  (fulfilling (2.13)) can 
be found such that (2.12) becomes a total system. Here we give a necessary condition, 
which results from the further expansion around the stationary point and which is 
essentially based on the fact that 

A,, = A ' ( $ ) $ , ,  = O  since 4,1 = 0. (2.17) 
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Differentiating (2.12) with respect to x k  gives 

B;=(A') ' '4 , ,+ ,k+(A1'  -D")C,k, 

and the next derivative with respect to x n ,  evaluated now at the stationary point, results 
in 

B, ,=(a-D)e , , .  

As C,, must be symmetric for every n, this means, in view of (2.13), that 

eB- ' B,n must be symmetric for every n. (2.18) 

In N dimensions (i.e. with N x-variables) this represents N2(  N - 1)/2 conditions. 

2.5. A further condition for singular difursion 

When D is singular, then its product with the matrix T of its algebraic complements 
vanishes, so that (2.12) leads to the somewhat simpler form 

(2.19) T K ( x )  = T A ( + )  grad 4. 
This relation is particularly useful in two dimensions, where 

0 -1 
" 4 )  = ( (2.20) 

In a rotated coordinate system ( U ,  U )  with the U axis pointing into the direction of the 
diffusion and the U axis perpendicular to it, (2.19) can be rewritten as 

K "  = f ( + ) + , u  = { F [ + ( u ,  U ) l l , u  ( F '  Af) 
with the solution 

F [ + ( u ,  U)]= 1' K " ( u ' ,  U )  du'+ V(U), (2.21) 

and +(U, U )  is the inverse of F. The two functions F and V are specified, when (2.21) 
and (2.20) are inserted into (2.12). If this insertion fails, then clearly (1 .1)  does not 
hold. We note that for this consideration the existence of a stationary point of the drift 
is not required. 

3. State-dependent diffusion 

When the diffusion matrix D depends on x, it is natural to include a noise-induced 
drift s a ( x )  (see Ryter and Deker (1980) for a discussion of a ) :  

(3.1) { - [ K ' ( x )  + &a'(x)lP(x) + ~ r ~ " ~ ) P ( x ) l * , l , ,  = 0. 

3.1. Consequences of the Gibbs-type form ( 1 . 1 )  

Inserting ( 1.1 ) into (3.1 ) gives 

E - ' [ ( K ' + D " ~ , , ) ~ , , ] - [ K ~ ,  - ( U ' - D : ) ~ , ~  +D;+,,+ ~ " 4 , , l - ~ [ ~ f l ~ ~ ~ , I ~ ~ ,  

where the three square brackets have to vanish separately. The first one restates (2.7) 
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and the third one shows that 

a' = D>I:+ b',  

With (2.6) the second one reduces thus to 

where b: ,  = 0. 

rII = b '4 ,1 ,  

Clearly, (2.10) remains valid, but (3.3) now only implies that 

r : t = A y 4 , j =  bJ$',j> 
such that 

b' = A!; + C '  where c '4 , ,  = 0 and d I  = 0. (3.4) 

{ - ( K ' + ~ b l ) p + ~ D V p , J } , , = O  (3.5) 

In view of (3.2) a slightly simpler form results for (3.1): 

where b:, = 0. We note that the part b of the noise-induced drift does not originate 
from the x dependence of D and that it could already have been included in § 2. We 
further mention that when (3.4) is inserted for b in (3 .5) ,  then c does not contribute. 

3.2. The suficient condition 

We may again consider the special case A = constant. By (3.4) this entails b = c, which, 
in the sense of the above remark, is equivalent to b = 0 .  Furthermore, (2.12) (with 
A = A) and (2.13) are still valid, so that 

grad 4 = {h?' - [ D ( x )  - f i ] } - ' K ( x ) .  (3.6) 

It is easy to check whether the right-hand side is actually a gradient. If so, $(x) is 
readily evaluated, otherwise A is not constant or (1.1) fails. 

3.3. A further assumption 

Returning to the general case, we observe that the presence of b modifies the situation 
of § 2 considerably. To illustrate this, we point out that one could in principle solve 
(2.7) for 4, determine A from (2.6) and ( 2 , I l ) ,  and then check whether (3.4) holds; 
in other words, b alone may decide whether ( 1.1)  applies. 

In order to stay within the frame of 92 we now assume 

b = O  (3.7) 
or, less restrictively, b'd,, = 0, so that we have again 

r,ll = 0 and thus A = A ( 4 ) .  

3.4. The necessary condition 

The argument of § 2.4 takes now a slightly more complicated form. With the abbrevi- 
ation G e ( A  - D ) - ' ,  (2.12) becomes 

4,1= G,KJ, 
whence 

4 , t k  = (G,k) l lK' - t  G,&. 
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At the stationary point this is equivalent to (2.13). At a small displacement Sx the 
first-order variation is 

8 6 , , k  = (&,k) ,16K1+8G, ,&+ &,]8B; 

with 6 , k  = 6b,& 6~ = &DE in view of (2.17) and with 6 = 6B-I. 

(Cg-'), l [(  8 , k C ) i  + ( 8 , n e  + g,");] 
This must be symmetric in i, k. A more compact form follows for Sx 8x":'then 

must be symmetric in i, k for every n. 
(3.8) 

4. Summary and discussion 

Based on the expansion around a stationary point of the drift, we established the 
necessary conditions (2.18) and (3.8) for a distribution of the Gibbs type (1 .1)  to exist; 
they hold if a noise-induced drift is only admitted in the minimum form which is 
imposed by a possible state-dependence of the diffusion. 

A more restrictive assumption ( A  constant) made it possible to establish the explicit 
expressions (2.15) and (3.6) for the gradient of the exponent 4: the corresponding 
integrability condition takes the compact form (2.16) when the diffusion is constant. 

Since 4 is a proper scalar (which follows from (2.7) and from the fact that both 
K and D transform like contravariant tensors, see Ryter and Deker (1980)) and since 
p is a scalar density, it follows that ( 1 . 1 )  is invariant under any changes of the x-variables 
with a constant Jacobian. It is not difficult to verify that this invariance holds throughout 
this paper, with the important exception of § 2.1: detailed balance is typically not 
preserved even under linear transformations. Thus, if (2.18) or (3.8) is not met, a time 
reversal symmetry cannot hold in any admissibly transformed variables. 

We have to add two remarks about the extension to state-dependent diffusion. The 
first one concerns § 2.1, more precisely the splitting of the noise-induced drift a 
analogous to (2.2): from the general notion of detailed balance (Graham and Haken 
1971, Graham 1973) it can easily be inferred that D: is irreversible, but for ( 1 . 1 )  to 
hold, it is also necessary that the remaining part, which is not induced by the x 
dependence of D, be purely reversible. This latter requirement is of course fulfilled 
by (3.7), but it need not hold in general, see Ryter and Deker (1980). The second 
remark concerns § 2.5: while (2.19) also holds with an x-dependent T, the following 
calculation becomes more involved and is not reproduced here. 

To close, we mention that the present theory immediately exhibits the well known 
facts that one-dimensional equations (see (3.6), which reduces by (2.9) to 4 ' ( x ) =  
- K ( x ) / D ( x ) ) ,  as well as systems with a linear drift and constant diffusion (see (2.16) 
and (2.1 S)), are trivially integrable. 
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Note added in proof As will be shown in a forthcoming paper, the form (1.1) also has an impact on 
dynamical properties: a basic relation between the eigenfunctions of the forward operator and those of the 
backward operator becomes independent of E .  
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